A Novel Gabor-LDA Based Face Recognition Method
نویسندگان
چکیده
In this paper, a novel face recognition method based on Gabor-wavelet and linear discriminant analysis (LDA) is proposed. Given training face images, discriminant vectors are computed using LDA. The function of the discriminant vectors is two-fold. First, discriminant vectors are used as a transform matrix, and LDA features are extracted by projecting original intensity images onto discriminant vectors. Second, discriminant vectors are used to select discriminant pixels, the number of which is much less than that of a whole image. Gabor features are extracted only on these discriminant pixels. Then, applying LDA on the Gabor features, one can obtain the Gabor-LDA features. Finally, a combined classifier is formed based on these two types of LDA features. Experimental results show that the proposed method performs better than traditional approaches in terms of both efficiency and accuracy.. . .
منابع مشابه
Gabor Feature Based Face Recognition Using Supervised Locality Preserving Projection
This paper introduces a novel Gabor-based supervised locality preserving projection (GSLPP) method for face recognition. Locality preserving projection (LPP) is a recently proposed method for unsupervised linear dimensionality reduction. LPP seeks to preserve the local structure which is usually more significant than the global structure preserved by principal component analysis (PCA) and linea...
متن کاملA SVM Face Recognition Method Based on Optimized Gabor Features
A novel Support Vector Machine (SVM) face recognition method using optimized Gabor features is presented in this paper. 200 Gabor features are first selected by a boosting algorithm, which are then combined with SVM to build a two-class based face recognition system. While computation and memory cost of the Gabor feature extraction process has been significantly reduced, our method has achieved...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملGabor-based Face Recognition Under Varying Pose and Expression Using PCA plus LDA
Abstrak – A pose and expression robust Gaborbased face recognition method is proposed in this paper. This involves convolving a face image with a series of Gabor wavelets at different scales, locations, and orientations. Linear Subspace methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are then applied to the feature vectors for dimension reduction as wel...
متن کامل2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA
In this paper, we present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize...
متن کامل